The DigitalGlobe Foundation (DGF), an educational nonprofit established by commercial satellite imagery provider DigitalGlobe, celebrates its tenth anniversary this year. To promote globally significant research and prepare the next generation of geospatial professionals, DGF awards grants to students and scientists in the form of free access to the company’s imagery, training, and other space-based technology.

DGF founder Mark Brender saw the need in 2007 to ramp up workforce development in preparation for the industry’s imminent growth.

“We needed a way to open our aperture, to bring new ideas and people into geospatial sciences and the commercial remote sensing imagery ecosystem,” Brender said. “The best way to do that was to establish a foundation that can put high-resolution imagery into the hands of students so they can experiment with it, understand it, and eventually become geospatial users.”

To date, DGF has awarded more than 3,000 imagery grants valued at more than $14 million to students and researchers around the world. Such fieldwork has explored changes in topography over time, human and wildlife population sustainability, and historic site identification.

Students at USGIF-accredited GEOINT programs are often the recipients of such grants. 

Our partnership with DGF provides unique opportunities for USGIF’s 14 accredited college and university programs,” said USGIF CEO Keith Masback, who is also a member of DGF’s board of directors. “With this access they are able to expand their ability to conduct research and advance the GEOINT tradecraft.” 

In addition to research support, DGF also offers scholarships to select partner schools, including $5,000 annual awards to students at George Mason University and the University of Colorado.

To encourage more global-scale problem-solving from promising geospatial scientists, DGF is gradually expanding its scope beyond awarding imagery grants for specific research projects. Since March, DGF President Kumar Navulur has led the foundation toward investments in three main areas:

  • Leveraging machine learning and spectral analysis to extract insights from data.
  • Promoting the study of foundational sciences where the current global capacity is sub-par, specifically photogrammetry and physics.
  • Creating a cooperative network of research-focused universities.

According to Navulur, DGF has also expanded its reach from just a few universities outside the U.S. to a wider distribution of 50 universities in 20 countries. Additionally, DGF has established a relationship with the African Association of Remote Sensing of the Environment, which consists of about 50 more universities.

The foundation hopes increased support will push young geospatial professionals to seek tangible solutions to major environmental problems.

“I would love for universities to look at how to use imagery to document the quantifiable progress of the United Nations’ Sustainable Development Goals,” Navulur said.

In years to come, DGF partners and grant recipients will benefit from new access to cloud-penetrable radar data from Maxar Technologies, DigitalGlobe’s new parent organization. Additionally, case-specific imagery grants will be supplemented with access to the company’s global base map, DigitalGlobe Cloud Services.

“We are ensuring students have the skills to develop location-based technologies like the Internet of Things and remote sensing,” Navulur said. “Not only will they get jobs, they’ll make a difference in the world.”

Following are case studies featuring seven DGF grant recipients who are already making a difference:

Egyptian Looting

DGF granted three high-resolution images to University of Alabama at Birmingham’s Dr. Sarah Parcak to help measure archaeological looting in Egypt. Illegal digging reports were growing in the Saqqara and Dashur regions south of Cairo. Up-to-date data was not immediately available, so official theft measurements for the area were highly inaccurate until Parcak received access to GeoEye imagery via DGF.

 

DigitalGlobe Foundation – Sarah Parcak / Girls Inc. from Trajectory On Location on Vimeo.


Surveying Nomadic Health

In one of its first grants, DGF released imagery to Stanford researcher Hannah Binzen Wild for her analysis of health in nomadic pastoral populations in Ethiopia. Wild used the data to locate mobile settlements quickly enough to develop and deliver hundreds of surveys to people living in the remote Nyangatom region of Ethiopia’s Lower Omo Valley. She’s now back at Stanford, working in collaboration with the Stanford Geospatial Center to refine the use of imagery for analysis by developing algorithms to determine average settlement size and other population characteristics. The team hopes these methods and pilot data can serve as a foundation to improve health care access for nomadic populations in other contexts.


Tracking Gold

Michael Armand Canilao, an archaeologist and University of Illinois in Chicago graduate student, received an imagery grant from DGF supporting his research on ancient gold trading routes in the Philippines. DGF released four sharpened WorldView-2 multispectral images each displaying 1,000 square-foot tiles in northwest Luzon. The imagery enabled a closer look at the trails and, according to Canilao, made clear “how small-scale gold miners were able to negotiate, and, in some cases dictate, the terms of their participation in Early Historical Period maritime gold trade.”


Mapping the Magan Peninsula

New York University doctoral candidate Eli Dollarhide sought to uncover the true historic landscape of Magan, an ancient peninsula in Oman with an uncertain political past. DGF granted Dollarhide access to Worldview-2 and -3 imagery of the land between Bronze Age settlements Bat and Amlah. This imagery helped Dollarhide’s team determine where to spend their limited time in the field and enabled the discovery of prehistoric tombs, petroglyphs, and roughly 450 other previously undocumented archaeological sites.


Satellites Over Seals

University of Minnesota researcher Michella LaRue and her team used imagery provided by DGF to determine factors affecting the population variation and distribution of Weddell Seals along the Antarctic coast. Both commercial fishing and the melting of ice caused by climate change have affected the ice-dependent species. The project aims to determine what environmental conditions the seals require to survive. “We literally couldn’t do this research without [this imagery],” LaRue said. She manually scoured the imagery to count seals, and compared her findings to modern, ground-validated counts as well as counts from the 1960s.


Erosion in the Yukon

It is theorized that slight increases in temperature caused the recent disappearance of the glacial Slims River in the Yukon. Dan Shugar, a researcher and professor at the University of Washington, Tacoma, was awarded WorldView-1, WorldView-2, and GeoEye-1 imagery by DGF to create 3D maps of the region. This enabled him to observe erosion processes in the Slims and Kaskawulsh rivers. Some imagery is being converted into a series of multi-temporal digital elevation models (DEMs) to visualize the hydrological system underground in search of changes that would affect glacial drainage. Shugar called these DEMs “a game changer.” DGF is continuing to work with Shugar on new tasking for stereo and multi-spectral images to detect changes in Kluane National Park.


Valley of the Khans

DGF helped researchers from the University of California San Diego, the Mongolian Academy of Science, and the National Geographic Society in their quest to locate the final resting place of Genghis Khan. In one of its first grants, DGF provided Albert Yu-Min Lin and his team with imagery of multiple areas over Mongolia. The researchers are leveraging the power of the crowd and enlisting the general public to help study the satellite imagery and identify features of interest. The aim is to find Khan’s tomb using non-invasive tools and enable protective conservation methods at the historic site.


Images courtesy of DigitalGlobe and the individual DGF grant recipients.

Related


Posted by Andrew Foerch